
Sage ERP MAS 90 and 200: Using
Business Object Interface - Beginner
Part 1 of 2 – Course Number P-ERP22 and P-ERP22B

CPE Credit

• In order to receive CPE credit for this session, you must be
present for the entire session.
– Session Code: P-ERP22B (Monday) OR P-ERP22 (Tuesday)

– Recommended CPE Credit = 1

– Delivery Method = Group Live

– Field of Study = Specialized Knowledge and Applications

• Visit the Sage SummitConnect kiosks to enter CPE credit
during the conference.

Introduction

• Steve Malmgren – Sr. Director of Development

• Elliott Pritchard – Principal Software Architect

• This presentation will be available online after the conference.
You will receive an email for the Summit session website
approximately 1-2 weeks after Summit. (Or sooner if you
brought your laptop or a jump drive)

• Follow us on Twitter: @Sage_Summit, @swmalm

– Use the official Summit hashtag: #SageSummit

Multipart Sessions

• This session is part of a focused, multipart session series.

• Attendees that register for a multipart session series must
register for all parts in the series.

Learning Objectives

• After participating in this session, you will be able to:

– Understand the different Object Types available for use in Sage ERP
MAS 90 and MAS 200

– Distinguish between “using” objects and “changing the behavior” of
objects

– Use the key methods and properties of each object type

Key Concepts and Terms

• UDS – User Defined Scripts. Scripts that can be attached
to buttons, or database events.

• UI – User Interface. This refers to Sage ERP MAS 90
entry screens

• API – Application Programming Interface.

• Business Object Interface – API to programmatically “use”
Sage ERP MAS 90 objects to read and write data,
generate and print reports, invoke register/update
routines.

• Business Rules – validations that are enforced to ensure
proper data is written to a table.

• COM – Component Object Model – using properties and
methods of objects

Sage ERP MAS 90 and 200 Object Types

Type Suffix Description

Service _SVC Read only access to tables

Business _BUS Read/Write/Delete enforces business
rules when writing to tables

Reports and Forms _RPT Print reports and forms with no UI

Update _UPD Audit trail and update processes

User Interface _UI Sage ERP MAS 90 and 200 screens

Approach

• Overview of object type and how they are used

• Cover Key Methods and Properties of each object type

• Examine code in example scripts

• Run sample scripts with debug trace window visible

• A lot to cover, all examples and presentation will be available to
review during conference and/or when you get back to your
office

Naming Conventions

• Service and Business

– Table name + _SVC or _BUS

– e.g. AR_Customer_SVC; AP_Vendor_BUS

– Exception - Line entry business objects (_BUS):

• Table names follow convention of XX_XxxxxXxxxHeader and
XX_XxxxxXxxxDetail

• Object name disregards Header and Detail naming is the object is
responsible for both tables

• Name: SO_SalesOrder_BUS; AR_CashReceipts_BUS

– Reports, Forms, Updates and UI, consult Object Reference (see
next slide) to be sure

Service Objects (_SVC) - Summary

• Service Objects are Read Only access to tables in the system.

• Primarily used by the Business Objects (_BUS) to validate
fields against other tables.

– Sales Order validates the customer being added to the
SO_SalesOrderHeader table using the AR_Customer_SVC object

– Supports flow of UDFs

• Some Service Objects provide other services such as:

– calculating an aging for a customer

– calculating an invoice due date based on a terms code

• SO Sales Order, SO Invoice and AR Invoice all use the
AR_TermsCode_SVC.CalcDates() method to calculate due date and
discount dates

– View Public Methods in Object Reference for desired object and
inherited classes

Service Objects (_SVC) - Summary

• TIP – When obtaining an object handle to a Service Object,
use oBusObj.GetChildHandle(<dataSource> As String) rather
than oSession.GetObject(<serviceObject As String) to minimize
memory usage.

– First Option – service object is already in memory. May need to do
a oSvc.ReadAdditional(<dataSource As String) OR .Find() to
populate data

– Second Option – creates a new copy of the object in memory

Service Objects (Key Methods() and Properties)

• MoveFirst(); MoveNext(); MoveLast(); MovePrevious()

• GetKeyColumns() As String – Helper Method

• GetColumns() As String – Helper Method

• SetKeyValue(<keyColumn As String>, <keyValue As String)

• Find() - no arguments, must use SetKeyValue() for each key
column
Find(<keyValue as String>) - only used on single column keys

Service Objects (Key Methods() and Properties)

• GetValue(<column As String>, <val As String OR Numeric)

• GetRecord(<rec As String>, <pvx IOL - not useful in scripting
instead use GetColumns()>)

• SetBrowseFilter(<first n characters to filter As String>)

• BOF; EOF – indicates whether or not the row pointer is at the
beginning or end of file respectively

• LastErrorNum, LastErrorMsg As String – contains error code
and message of last error that occurred. TIP - May not be
based on the last operation if successful. (NOTE: These
properties are in ALL object types and should be checked on
failed method calls)

Let’s Take a Look – Service Object (AR_Customer_svc)

• Appendix – To have a look at some background info

• Service_AR_Customer_svc.txt – Service Object Script

file:///home/jrs/work/Sage%20Summit%202011/Service_AR_Customer_svc.txt

Business Objects (_BUS) - Summary

• Business Objects enforce all of the business rules for adding
data into the system.

• Behavior can be changed via User-Defined Scripting!!

• Always use Business Objects rather than writing directly to the
database to ensure the integrity of the system

• VI uses the Business Objects to import data as does the User
Interface (UI) of Sage ERP MAS90 and MAS200

• Some history tables have business objects defined, BUT are
for migrating a customer from another system to Sage ERP
MAS90 and MAS200. Best practice is to use data entry tables
and process through the updates (which can all be automated)
to get data into history tables.

Business Objects - Key Methods() and Properties

• Inherits all Service Object methods and properties

• SetKey() - Same as Find (with or without arguments, but used
to place a row into an EditState for new rows)

• SetValue(<column As String>, <val As String or Numeric>)

• Write() - saves changes

• Delete() - deletes current row

• Clear() - takes row out of edit state and discards any changes

Business Objects - Key Methods() and Properties

• GetDataSources() As String - returns list of columns that
validate against a Service object

• GetChildHandle(<data source As String>) As Object - returns
an Object handle to a Service Object

• ReadAdditonal() - reads ALL child data sources for current row
ReadAdditional(<data source As String>) - read specified data
source

• SetCopyKeyValue(<keyColumn As String>, <keyValue As
String>)

• CopyFrom()

Business Objects - Key Methods() and Properties

• EditState – 0 if no record in memory; 1 if existing record; 2 if
new record

• RecordChanged – 0 if no changes, 1 if record has changed

Let’s Take a Look – Business Object (AR_Customer_bus)

• Business_AR_Customer_bus.txt – Business Object Script –
Existing Customer

• NewRecord_AR_Customer_bus.txt – Business Object – Create
New Customer (GetNextCustomerNo(); CopyFrom())

file:///home/jrs/work/Sage%20Summit%202011/Business_AR_Customer_bus.txt
file:///home/jrs/work/Sage%20Summit%202011/NewRecord_AR_Customer_bus.txt

Summary - Service and Business Objects

• Service Objects – Read Only

– SetKeyValue()

– Find()

– GetValue()

• Business Objects – Read/Write/Delete

– SetKeyValue()

– SetKey()

– GetValue()

– SetValue()

– Write()

– Delete()

Summary - Service and Business Objects

• Service Objects – What we’ve done

– Browsed rows with and without a browse filter

– Examined BOF and EOF

– Found a specific row and retrieved a value

– Used a While/Wend loop to calculate over 90 day balance for
division 01

• Business Objects – What we’ve done

– Edited an existing record; examined a failed SetValue() and
Delete() method call

– Created a new customer; used GetNextCustomerNo; used
SetCopyKeyValue() and CopyFrom() methods

– Saw how to use GetChildHandle() to get a service object handle

Business Objects (Line Entry) - Key Methods and
Properties
• AddLine() - creates a new, empty line with default values

• Lines – object handle to the detail business object

– Set oLines = oBusObj.AsObject(oBusObj.Lines)

– Just like any other business object (GetValue(); SetValue();
Write(); Delete())

• GetEditKey(<lineKey As String>) – Used to get the edit key of a
line based on the 6 character LineKey column (will cover these
in Part 2)

• EditLine(<editKey As String>)

• DeleteLine(<editKey As String>)

Let’s Take a Look – Business Object (SO_SalesOrder_bus)

• Create_SO_SalesOrder_bus.txt – Business Object Script –
Create SalesOrder

file:///home/jrs/work/Sage%20Summit%202011/Create_SO_SalesOrder_bus.txt

Summary – Line Entry Business Objects

• What we’ve done

– Used a SO object from the AR module – Set the Module and Date
to SO prior to “getting” the SO_SalesOrder_bus object

– GetNextSalesOrderNo

– SET oLines to the oSO.AsObject(oSO.Lines) property to access
the detail business object

– Used the oScript.DebugPrint() to display any error messages

– Used the oScript.SetStorageVar() to store off a Sales Order
number as well as detail line to be used in the edit line and delete
line scripts for Part 2.

Report Objects (_RPT) - Summary

• Report Objects are used to print, preview, defer or deliver
(using paperless office) any Report or Form via the Business
Object Interface.

• Forms need to be run once from the UI so that the customer
can choose which report template (Marbled, Plain Paper, etc.)
to use.

• NOTE: Audit Journals and Registers, as well as related recaps
and error logs are printed from within the Update (_UPD)
objects

Report Objects - Key Methods() and Properties

• SelectReportSetting(<savedReportSetting As String)

– If no saved settings available can ALWAYS use “STANDARD”
which is factory defaults

– Use SY_ReportSetting_svc to determine any saved settings

• ProcessReport(<destination As String)

– “PREVIEW”

– “DEFERRED”

– “PRINT” – based on default printer for report setting

– “EXPORT”, “EXPORTDATA” (warning prompts user for type and
location)

FORM Objects - Key Methods() and Properties

• QuickPrint As String

– Not all forms support this – Check Object Reference (e.g.
AR_Statement_rpt does not, SO_SalesOrderPrinting_rpt does)

• TIP: Must select a template (e.g. marbled, plain paper, etc.)
first via the UI or script will not work

Let’s Take a Look – Report and Form Objects

• ReportSimple_AR_AgedInvoice_rpt.txt – Report Object Script

• QuickPrint_SO_SalesOrderPrinting_rpt.txt – Forms Object

file:///home/jrs/work/Sage%20Summit%202011/ReportSimple_AR_AgedInvoice_rpt.txt
file:///home/jrs/work/Sage%20Summit%202011/QuickPrint_SO_SalesOrderPrinting_rpt.txt

Summary – Report and Form Objects

• What we’ve done

– Used SelectReportSetting() for both STANDARD and saved
setting (even had to set one up since it failed the first time)

– Used ProcessReport() for all output types

– Used oScript.GetStorageVar() to retrieve the sales order number
created and saved off in another script, to use to set the
QuickPrint property of a FORM object

Update Objects (_UPD) - Summary

• Update Objects are used to post data entry transaction through
to the history tables and to post GL transaction associated with
those entries.

• Encompasses both the Register (audit trail report) and the
update posting logic.

• The Register must be “Printed” either to hard copy, paperless
office or deferred print in order for the transactions to be
updated. (Previewed registers can only be updated with
appropriate security event rights)

• If errors are detected during the register printing, the update
cannot continue and an error log can be printed

Update Objects - Key Methods() and Properties

• ProcessReport(<destination As String)

– “PREVIEW” – cannot update unless Security Event rights

– “DEFERRED”

– “PRINT” – based on default printer for report setting

– “EXPORT”, “EXPORTDATA” (warning prompts user for type and
location)

• Update() – Executes the update process

Let’s Take a Look – Update Objects

• InvoiceOrder_SO_Invoice_bus.txt – Invoice Order Script
(Bonus Coverage!!)

• Update_SO_SalesJournal_upd.txt – Update Object

file:///home/jrs/work/Sage%20Summit%202011/InvoiceOrder_SO_Invoice_bus.txt
file:///home/jrs/work/Sage%20Summit%202011/Update_SO_SalesJournal_upd.txt

Summary – Update Objects

• What we’ve done

– Covered how to invoice a sales order and copy detail lines from
the sales order to the invoice (Bonus coverage)

– Used the ProcessReport() to print the main Audit Trail Register.
Same method as in the reports, so all output types are available

• NOTE: PREVIEW will not allow update unless have proper security
event rights

• ProcessReport() can fail if there is an error condition.

– Used the Update() method to post the Invoices through to GL,
Open Invoice, History, etc.

User Interface Objects (_UI) - Summary

• User Interface objects are used to display the Sage ERP MAS
90 and MAS 200 data entry screens

• The object class names are used to obtain security rights at a
task level.

• As an alternative, can be launched in a separate process using
the oSession.InvokeTask() method

UI Objects - Key Methods() and Properties

• Process() – displays UI

• Process(<recordToDisplay As String)

– Will bring the record (e.g. oARCust.Process(“01ABF”) – will
display customer 01-ABF

Let’s Take a Look – UI Objects

• UI_AR_Customer_ui.txt – AR_Customer_UI

file:///home/jrs/work/Sage%20Summit%202011/UI_AR_Customer_ui.txt

Questions?

Additional Learning Opportunities

• For information about additional learning opportunities visit
www.sageu.com (Sage University).

• Training options include:

– Anytime Learning—Recorded online training sessions.

– Realtime Learning—Live, online learning.

– Replay Learning—Recordings of live classes.

Your Feedback is Important to Us!

• Please visit a Sage SummitSurvey kiosks to complete the
evaluation form for this session.

• Remember each completed survey form is another entry
for one of three iPad drawings.

• Your feedback helps us improve future sessions and presentation
techniques.

• Please include your session code on the evaluation form:

– Monday (P-ERP22B)

– Tuesday (P-ERP22)

Contact Us

• Presenter Contact Information:

– Steve Malmgren, Elliott Pritchard

– Twitter @swmalm

• Follow us on Twitter: @Sage_Summit,

– Use the official Summit hashtag: #SageSummit

• Thank you for your participation.

Summary

• <It’s a good idea to summarize your key points at the end of
your session and focus on how to apply what they have
learned. Try to relate your summary points to your learning
objectives to reinforce these objectives for session
participants.>

Appendix

• How to Enable oScript.DebugPrint()

• Creating Objects

• Scripting.doc

• Script Events

• Link to 4.40 Customizer Recorded Sessions

• Link to 4.30 Customizer Recorded Sessions

• Microsoft's On-line VBScript Reference

Back

file:///home/jrs/work/Sage%20Summit%202011/Scripting.doc
http://community.sagemas.com/t5/Personalization-Customization/Video-of-Customizer-4-4-Training-by-S-Malmgren/td-p/20774
http://community.sagemas.com/t5/Personalization-Customization/Deep-Dive-Into-Customizer-for-MAS-90-and-200-v-4-3/m-p/1824
http://msdn.microsoft.com/en-us/library/d1wf56tt(v=vs.85).aspx

How to Enable oScript.DebugPrint()

Right-Click on title bar – Select Debugging
Environment..Program Trace window

Displays this window – Select Suppress Program Trace
and optional Auto-Start during script debugging

Creating Objects

• User-Defined Scripting (4.40 and above)

– oCustSvc = oSession.GetObject(“AR_Customer_svc”)
If oCustSvc <> 0 then
 SET oCustSvc = oSession.AsObject(oCustSvc)
End If

– Security of current session is used to establish authorization

• COM (Providex.Script)

– Set oSession = oPVXScript.NewObject(“SY_Session”)

– … (establish user, password for login, set module and module
date; check security, etc.) …

– Set oCustSvc = oPVXScript.NewObject(“AR_Customer_svc,
oSession)

Referencing Existing Objects

• User-Defined Scripting (4.40 and above)

– SET oCustSvc =
oBusObj.AsObject(GetChildHandle(“CustomerNo”))

– SET oLines = oBusObj.AsObject(oBusObj.Lines)

– NOTE: User-Defined Scripting requires the
.AsObject() wrapper to indicate return type is
an object handle

• COM (Providex.Script)

– SET oCustSvc =
oBusObj.oGetChildHandle(“CustomerNo”)

– SET oLines = oBusObj.oLines

– NOTE: o prefix in oBusObj.oLines to indicate
variable return type is an object handle

Script Events

Event Type Script Executes…
Pre-Validate Column After dictionary validation, prior to Sage/Master Developer

Post-Validate Column After the column value has been validated

Script-Initialization Table Runs once per business object on first script run

Set-Default-Values Table When a new record is established in the business object

Pre-Write Table Before a record is written

Post-Write Table After a record is written

Pre-Delete Table Before a record is deleted

Post-Delete Table After a record is deleted

Post-Read Table After a record is read

Pre-Totals Table Line Entry only, before totals are calculated

	Slide 1
	CPE Credit
	Introduction
	Multipart Sessions
	Learning Objectives
	Key Concepts and Terms
	Sage ERP MAS 90 and 200 Object Types
	Approach
	Naming Conventions
	Slide 10
	Service Objects (_SVC) - Summary
	Service Objects (_SVC) - Summary
	Service Objects (Key Methods() and Properties)
	Service Objects (Key Methods() and Properties)
	Let’s Take a Look – Service Object (AR_Customer_svc)
	Business Objects (_BUS) - Summary
	Business Objects - Key Methods() and Properties
	Business Objects - Key Methods() and Properties
	Business Objects - Key Methods() and Properties
	Let’s Take a Look – Business Object (AR_Customer_bus)
	Summary - Service and Business Objects
	Summary - Service and Business Objects
	Business Objects (Line Entry) - Key Methods and Properties
	Let’s Take a Look – Business Object (SO_SalesOrder_bus)
	Summary – Line Entry Business Objects
	Report Objects (_RPT) - Summary
	Report Objects - Key Methods() and Properties
	FORM Objects - Key Methods() and Properties
	Let’s Take a Look – Report and Form Objects
	Summary – Report and Form Objects
	Update Objects (_UPD) - Summary
	Update Objects - Key Methods() and Properties
	Let’s Take a Look – Update Objects
	Summary – Update Objects
	User Interface Objects (_UI) - Summary
	UI Objects - Key Methods() and Properties
	Let’s Take a Look – UI Objects
	Slide 38
	Additional Learning Opportunities
	Your Feedback is Important to Us!
	Contact Us
	Summary
	Appendix
	How to Enable oScript.DebugPrint()
	Slide 45
	Slide 46
	Creating Objects
	Referencing Existing Objects
	Script Events

