
Sage ERP MAS 90 and 200:
Customizer Basics and Beyond

Introduction

• Elliott Pritchard – Principal Architect, Sage MAS90/200

• Steve Malmgren – Sr. Director of Development, Common
Components

• This presentation will be available online after the conference.
You will receive an email for the Summit session website
approximately 1-2 weeks after Summit.

• Follow Sage on Twitter: @Sage_Summit

– Use the official Summit hashtag: #SageSummit

CPE Credit

• In order to receive CPE credit for this session, you must be
present for the entire session.
– Session Code: C-ERP35

– Recommended CPE Credit = 1.5

– Delivery Method = Group Live

– Field of Study = Specialized Knowledge and Applications

• Visit the Sage Summit Connect kiosks to enter CPE credit
during the conference.

Key Objectives

• After participating in this session you will be able to:

– Be refreshed on some of the Customizer basics

– Understand the basics of 4.50 Customizer new features, and
refresher on existing features

– Be able to print reports, registers, and forms through the
Paperless Office system via User-defined Scripts

– Get a glimpse into some areas of User-defined scripting that you
may not have been aware you could use.

– Use a combination of user-defined scripts, along with script
buttons, and UDF flow, to tailor Sage ERP MAS 90 and MAS 200
to your needs.

The reasons why we customize.

• Add features to Sage’s core product that work the way we do

• Differing business needs

• User preferences to improve productivity

A Review of Key Concepts and Terms

• UDF – User Defined Field. New fields that can be added to existing MAS 90
tables.

• UDT – User Defined Table. New tables that can be added to either the
MAS_XXX company or MAS_SYSTEM database.

• UDS – User Defined Scripts. Scripts that can be attached to buttons, or
database events.

• UI – User Interface. This refers to Sage ERP MAS 90 entry screens

• API – Application Programming Interface.

• Business Object Interface – API to programmatically “use” Sage ERP MAS 90
objects to read and write data, generate and print reports, invoke
register/update routines.

• Business Rules – validations that are enforced to ensure proper data is
written to a table.

Customizer Selection

• Access through Customizer Menu or <ctrl>+F9 while in the
screen you want to customize

• Change tab order

• Hide non-essential fields

• Add new fields to the form

• Add buttons

• Add new panels

Review of User-Defined Fields and User-Defined Tables

• Add your custom fields to almost any table

– Example Lot Expiry Date in IM_ItemCost

• Flow your new data through the system

– Move Lot Expiry date from Data entry through the update and
back into IM_ItemCost

• Create your own tables

Scripting Review

• 4.40 Introduced user-defined scripts

• Appendix – To have a look at some background info

Taking advantage of new features in Sage ERP MAS 90
Version 4.50
• Scripting can now take advantage of the Paperless Office

System

• New class to create Purchase Orders from Sales Orders

• Invoking UI Changes, as if the user had typed it in.

• Using Data from List boxes

Warehouse Transfer Example

• REQUIREMENT: Add ability to treat a Warehouse transfer like
a sale and a receipt. My warehouse transfers need an audit
trail that Inventory Transaction Entry doesn’t fulfill. We need
picking sheets, shipping documents, and receipts.

• Detail Requirements:

– Warehouse manager needs to replenish stock from Main
Warehouse, by submitting their own order, and receiving it.

– Via Inventory Maintenance satellite warehouse orders items.
Create Sales order at cost, as they “Shop”

– While viewing the satellite warehouse orders, auto-create a
purchase order for warehouse to use to receive goods.

– Then ship and receive like normal purchase and sales orders

Warehouse Transfer Workflow

Create and Add Items to Sales OrderCreate and Add Items to Sales Order

Create Purchase Order from Sales OrderCreate Purchase Order from Sales Order

Ship Sales OrderShip Sales Order

Receive Goods from Purchase OrderReceive Goods from Purchase Order

Clear created InvoicesClear created Invoices

Analyzing Work flow

• Create customer and vendor records for each warehouse,
along with paperless records.

• Create sales order while browsing items in Item Maintenance

– Validate warehouse

• Create purchase order from sales order, when ready to ship.

• Ship/Invoice Order and email warehouse manager that the
order has shipped. (Inventory relieved from Main warehouse)

• Receive Goods into inventory (Inventory received into new
warehouse)

• Clear invoices

How do we do it?

• Warehouse Maintenance

– Add fields to store associated customer and vendor numbers,
also for current open sales order

• Item Maintenance

– Use procedure to order items from the Quantity panel, to auto-
create sales order, when selecting warehouse and quantity

• Customer Maintenance

– From Sales Orders folder tab, view open orders and create
Purchase Order from selected orders

Ship it! … or at least Transfer it!

What did we just see and what did we use?

• UDF’s within existing MAS 90/200 tables

– Warehouse code in Vendor and Customer tables

– Customer, Vendor and Sales Order Number in Warehouse table

• UDT’s to validate our Transfer To Warehouse

• Data flow through the framework

– Moving UDF_Warehouse to the Sales Order

• Standard Screen Customization, to add new fields

• Scripting… Scripting… Scripting…

– Everything from button Scripts to create orders, to event scripts to
show and hide fields and to print and email reports

Script Events

Event Type Script Executes…
Pre-Validate Column After dictionary validation, prior to Sage/Master Developer

Post-Validate Column After the column value has been validated

Script-Initialization Table Runs once per business object on first script run

Set-Default-Values Table When a new record is established in the business object

Pre-Write Table Before a record is written

Post-Write Table After a record is written

Pre-Delete Table Before a record is deleted

Post-Delete Table After a record is deleted

Post-Read Table After a record is read

Pre-Totals Table Line Entry only, before totals are calculated

What did we just see and what did we use? (con’t)

• New 4.50 features incorporated

– Printing report through paperless office and emailing

– Use of purchase order from sales order creation object

• InvokeChange(“QuantityOrdered”, 3, <“GD_Lines”>)

– Using this will actually change the value of the field as if the user
typed it in themselves.

– Retains the messaging that would normally occur if the user
entered the value in the field.

– Updates other related fields on the screen automatically

– Works for grid cells as well as other data fields

What do we do when things go wrong?

• Panic? Or Debug?

• Test before implementing

– Use on a test company and system first while developing

• oScript.DebugPrint()

• Msgbox() for debugging, not for showing messages.

• Common Scripting “Doh”’s!

– Not including a retval = for function calls

– Always remember…spelling counts!

How to Find Examples for VBScript

• Google is your friend!!

– How to read a CSV file? Google “VBScript how to read a csv file”

– Interested in creating an Excel spreadsheet? Google “VBScript
how to create an Excel file”

– Want to know how to interface with outlook? Google “vbscript
how to invoke outlook”

Questions?

Your Feedback is Important to Us!

• Please visit a Sage SummitSurvey kiosks to complete the
evaluation form for this session.

• Remember each completed survey form is another entry
for one of three iPad drawings.

• Your feedback helps us improve future sessions and presentation
techniques.

• Please include your session code on the evaluation form: C-ERP35

Contact Information

• Presenter Contact Information:
Elliott Pritchard

Sage

elliott.pritchard@sage.com

• Follow Sage on Twitter: @Sage_Summit

– Use the official Summit hashtag: #SageSummit

• Thank you for your participation.

Appendix

• How to Enable oScript.DebugPrint()

• Creating Objects

• Scripting.doc

• Script Events

• Link to 4.40 Customizer Recorded Sessions

• Link to 4.30 Customizer Recorded Sessions

• Microsoft's On-line VBScript Reference

Back

http://community.sagemas.com/t5/Personalization-Customization/Scripting-doc-Documentation-mentioned-in-the-Customizer-4-4/m-p/23018
http://community.sagemas.com/t5/Personalization-Customization/Video-of-Customizer-4-4-Training-by-S-Malmgren/td-p/20774
http://community.sagemas.com/t5/Personalization-Customization/Deep-Dive-Into-Customizer-for-MAS-90-and-200-v-4-3/m-p/1824
http://msdn.microsoft.com/en-us/library/d1wf56tt(v=vs.85).aspx

Sage ERP MAS 90 and 200 Object Types

Type Suffix Description

Service _SVC Read only access to tables

Business _BUS Read/Write/Delete enforces business
rules when writing to tables

Reports and Forms _RPT Print reports and forms with no UI

Update _UPD Audit trail and update processes

User Interface _UI Sage ERP MAS 90 and 200 screens

Naming Conventions

• Service and Business

– Table name + _SVC or _BUS

– e.g. AR_Customer_SVC; AP_Vendor_BUS

– Exception - Line entry business objects (_BUS):

• Table names follow convention of XX_XxxxxXxxxHeader and
XX_XxxxxXxxxDetail

• Object name disregards Header and Detail naming is the object is
responsible for both tables

• Name: SO_SalesOrder_BUS; AR_CashReceipts_BUS

– Reports, Forms, Updates and UI, consult Object Reference (see
next slide) to be sure

Service Objects (Key Methods() and Properties)

• MoveFirst(); MoveNext(); MoveLast(); MovePrevious()

• GetKeyColumns() As String – Helper Method

• GetColumns() As String – Helper Method

• SetKeyValue(<keyColumn As String>, <keyValue As String)

• Find() - no arguments, must use SetKeyValue() for each key
column
Find(<keyValue as String>) - only used on single column keys

Service Objects (Key Methods() and Properties)

• GetValue(<column As String>, <val As String OR Numeric)

• GetRecord(<rec As String>, <pvx IOL - not useful in scripting
instead use GetColumns()>)

• SetBrowseFilter(<first n characters to filter As String>)

• BOF; EOF – indicates whether or not the row pointer is at the
beginning or end of file respectively

• LastErrorNum, LastErrorMsg As String – contains error code
and message of last error that occurred. TIP - May not be
based on the last operation if successful. (NOTE: These
properties are in ALL object types and should be checked on
failed method calls)

Business Objects (_BUS) - Summary

• Business Objects enforce all of the business rules for adding
data into the system.

• Behavior can be changed via User-Defined Scripting!!

• Always use Business Objects rather than writing directly to the
database to ensure the integrity of the system

• VI uses the Business Objects to import data as does the User
Interface (UI) of Sage ERP MAS90 and MAS200

• Some history tables have business objects defined, BUT are
for migrating a customer from another system to Sage ERP
MAS90 and MAS200. Best practice is to use data entry tables
and process through the updates (which can all be automated)
to get data into history tables.

Business Objects - Key Methods() and Properties

• Inherits all Service Object methods and properties

• SetKey() - Same as Find (with or without arguments, but used
to place a row into an EditState for new rows)

• SetValue(<column As String>, <val As String or Numeric>)

• Write() - saves changes

• Delete() - deletes current row

• Clear() - takes row out of edit state and discards any changes

Business Objects - Key Methods() and Properties

• GetDataSources() As String - returns list of columns that
validate against a Service object

• GetChildHandle(<data source As String>) As Object - returns
an Object handle to a Service Object

• ReadAdditonal() - reads ALL child data sources for current row
ReadAdditional(<data source As String>) - read specified data
source

• SetCopyKeyValue(<keyColumn As String>, <keyValue As
String>)

• CopyFrom()

Business Objects - Key Methods() and Properties

• EditState – 0 if no record in memory; 1 if existing record; 2 if
new record

• RecordChanged – 0 if no changes, 1 if record has changed

How to Enable oScript.DebugPrint()

Right-Click on title bar – Select Debugging
Environment..Program Trace window

Displays this window – Select Suppress Program Trace
and optional Auto-Start during script debugging

Creating Objects

• User-Defined Scripting (4.40 and above)

– oCustSvc = oSession.GetObject(“AR_Customer_svc”)
If oCustSvc <> 0 then
 SET oCustSvc = oSession.AsObject(oCustSvc)
End If

– Security of current session is used to establish authorization

• COM (Providex.Script)

– Set oSession = oPVXScript.NewObject(“SY_Session”)

– … (establish user, password for login, set module and module
date; check security, etc.) …

– Set oCustSvc = oPVXScript.NewObject(“AR_Customer_svc,
oSession)

Referencing Existing Objects

• User-Defined Scripting (4.40 and above)

– SET oCustSvc =
oBusObj.AsObject(GetChildHandle(“CustomerNo”))

– SET oLines = oBusObj.AsObject(oBusObj.Lines)

– NOTE: User-Defined Scripting requires the
.AsObject() wrapper to indicate return type is
an object handle

• COM (Providex.Script)

– SET oCustSvc =
oBusObj.oGetChildHandle(“CustomerNo”)

– SET oLines = oBusObj.oLines

– NOTE: o prefix in oBusObj.oLines to indicate
variable return type is an object handle

What Can Go Wrong?

• Wrong method or property name for a valid object handle will
result in a GPF crash. Usually a typo on the method name OR
the right method name using the wrong object handle variable

What Can Go Wrong

• Forgetting to do a SET on an object handle then trying to use a
method or property

What Can Go Wrong?

• Missing Parenthesis in a Method Call (typically only in BT_Link
scripts and User-Defined Script will catch this syntax error)

What Can Go Wrong?

• Forgetting to initialize return values as part of an argument to
either a “” for string or 0 for numeric can cause problems.

• Typo in a argument (such as GetValue(“CutomerNo$”, val))

– Missing the “s” in CustomerNo$

– Val will return blank (and you will wonder for hours how that can
be until you see the typo mistake)

– Also if val was initialized to a number it will return 0

• Forgetting to check retVal on a SetValue(), Write() or Delete()
and checking LastErrorMsg to see why it failed

– If you don’t check, it will continue on and you will wonder why you
did not get expected results

What Can Go Wrong?

• Using a business object from another module

– There can be unexpected results, even strange errors that you
won’t understand

– Best practice is store off current module and do a SetDate() and
SetModule() for the module code the object belongs to

• SetKey() can fail if another user has a row locked (usually only
in line entry objects)

• GetObject() can fail if a user is in a single user task (such as
A/R Setup Options)

	Slide 1
	Introduction
	CPE Credit
	Key Objectives
	The reasons why we customize.
	A Review of Key Concepts and Terms
	Customizer Selection
	Review of User-Defined Fields and User-Defined Tables
	Scripting Review
	Slide 10
	Warehouse Transfer Example
	Warehouse Transfer Workflow
	Analyzing Work flow
	How do we do it?
	Ship it! … or at least Transfer it!
	What did we just see and what did we use?
	Script Events
	What did we just see and what did we use? (con’t)
	What do we do when things go wrong?
	How to Find Examples for VBScript
	Questions?
	Your Feedback is Important to Us!
	Contact Information
	Appendix
	Sage ERP MAS 90 and 200 Object Types
	Naming Conventions
	Slide 27
	Service Objects (Key Methods() and Properties)
	Service Objects (Key Methods() and Properties)
	Business Objects (_BUS) - Summary
	Business Objects - Key Methods() and Properties
	Business Objects - Key Methods() and Properties
	Business Objects - Key Methods() and Properties
	How to Enable oScript.DebugPrint()
	Slide 35
	Slide 36
	Creating Objects
	Referencing Existing Objects
	What Can Go Wrong?
	What Can Go Wrong
	What Can Go Wrong?
	What Can Go Wrong?
	What Can Go Wrong?

