DIREXIONS
Base Classes 101

PROVIDEX

PARTNERS
IN SUCCESS




To receive CPE credits, please sign
up at the back of the room.




Presentation Overview

* MAS 90 Framework Review
* Base System Classes
* Base Application Classes
* Implementation Classes




Core Concepts and Terms

* Tiered Architecture
* Separation of Business and Ul

* Each Program has a Business Rules
component and a Ul component

* Important for Utilities (e.q. Visual
Integrator) and Integrations

* Provides common business logic for all
processes

* Example: Sales Order Update - same logic
* MAS 90 Desktop
* VI Import
* Act! Link or CRM Integration




Base System Classes

* Session Tracking and Core
Functionality
* SY Session - Session Control Object
* SY Security - Security Control Object
* SY Ul - General Ul methods

* SY File - General File I/O & Dictionary
routines

* SY Constant - Common Constants

* SY OpenObject - Encapsulates
ProvideX “Open Object”




SY Session

* Session object must be instantiated
for every session of MAS 90 or 200
that starts up

* Instantiated as coSession or %SYS SS
* SY Startup.m4p for Business Framework
* SY StartuplLegacy.m4p for Legacy apps
* Maintains several key session
properties
* Logon Information including user code,
company, module, security settings, etc.
* Provides system-wide functions

* Launch tasks, encryption, etc.



SY Security

* Creates security context to run
applications under

* Ul Objects setup security during startup

* Non-Ul objects must inherit or create

their own security object (those being
created externally)

* Security Object attaches to Session

* Security context stored in
cSecurityAccess

* Attached Security object will change
when new Ul program is run



SY Security

DIREXIONS

2007

Instantiating

SY_Session

AR_Customer_UlI

v
Cl_ItemCode_Ul <«—» SY_Seculity

v
SO_ShipToAddress_Ul <« SY_Security

PROVIDEX

PARTNERS
IN SUCCESS

4

Invoking

SY_Sess%
G

R_Customer_ Ul <«—» SY_Security

coSession’InvokeTask é

SY_Sess%

AR_Salesperson_Ul <«—» SY_Security

¥




DIREXIONS SY—U |

2007

* Created by SY Session when a Ul
Process Is launched

* Adds low level properties and
methods that are applicable only
when a Ul is present
* Caption$
* SystemDate$
* MessageBox%$()

* ProgressBar()

PROVIDEX * Note new Progress Meter for 4.30

PARTNERS
IN SUCCESS




SY File

* Provides file I/O for the Data
Dictionary
* |OList$
* FileCreated
* FileExists
* OpenTable()
* CreateTablel()
* LockTable()
* CloseTable()
* KeyDescription$()

* Most dictionary functions moved to
external API for performance




SY Constant

* Contains default properties and
methods used throughout MAS 90
* LastErrorMsg$ & LastErrorNum$
* Return Constants
* Message Constants
* Edit State Constants
* Date and Time Constants

* Inherited by virtually all objects in
the Framework

* Don’t modify SY_Constant to call other
objects (creates circular references)




SY OpenObject

* Inherited primarily by SY Service
* Should be a part of any business object
* Ensures correct pathing logic

* Utilizes OPEN OBJECT

* File channels opened for exclusive use

* Other objects (unless part of the
Inheritance tree) cannot access this file

* Enforces encapsulation

* Potential Windows Vista/Server
2008 enhancements

* Files may need to move to new location




Class Hierarchy

* Base or Foundation Classes

* Core classes providing common
functionality

* Always inherited into Implementation class

* Should not be modified
* Equivalent to old LM public programs
* Provides commonality between all programs

* Implementation Classes are Created
* Objects built from Base classes
* Exception code that is unique for program

* Separate functionality for Service, Business
and Ul classes




DIREXIONS

2007

SY|

Hierarchal View of Base
Classes

SY_OpenObject
SY_Constant
*NOMADS
SY_Common
SY_CommonUl
SY_Service
SY_Maint
SY_MaintUl

| Constant

PROVIDEX

PARTNERS
IN SUCCESS

‘L SY_Constant l

*NOMADS

SY_Common

_\> SY_OpenObiject

SY_Constant SY_Common

SY_OpenObject

SY_Constant SY_Service

SY_OpenObject

SY_Constant

*
MORTES SY_CommonUl

SY_CommonUl

SY_Service

SY_Maint

SY_MaintUl



Building Classes

SY_OpenObject

SY_Constant

*NOMADS

SY_Common

SY_CommonUl

SY_Service

SY_Maint

SY_MaintUl

AR_Customer_BUS AR_Customer.M4L

%

AR_Customer_UlI

AR_Customer_BUS

ivision_SVC
.alesperson_SVC
AR_CustomerContact_SVC
AR_TermsCode SVC
AR_CustomerCreditCard_SVC
AR_PaymentType_SVC
Cl_ItemCode_SVC
SY_Country_SVC
SY_ZipCode_SVC

SY_SalesTaxSchedule_SVC




Base Application Classes

* Application Building Blocks

* Business Classes
* SY Common
* SY Service
* SY Maint
* Ul Classes
* SY CommonUl
* *NOMADS
* SY MaintUl

* Validation Classes




SY Common

* Inherited class
* Inherited primarily by SY Service
* Also inherited by SY Update
* Includes Common Local Methods
* L ocalizelOList()
* GetNextSequencel()




DIREXIONS

2007

PROVIDEX

PARTNERS
IN SUCCESS

SY Service

Provides consistent interface to
access data (read only)

Base implementation class for Service
objects and inherited into SY_Maint

Opens table specified in cMainTable$

Key Properties and Methods
* EOF,BOF

* Browse Methods
* MoverFirst(), Movelast(), Find(), etc.

* BindVariables()
* GetRecord(),GetValuel(),etc.



DIREXIONS SY Maint

2007

* Provides consistent interface to
access data (read and write)

* Read interface inherited from SY Service

* Include properties for Record State
* EditState
* RecordChanged

* Includes Methods used to
Read/Write records

* SetKey() / SetValue()

PROVIDEX * Write()

PARTNERS * Delete() / Clear()
IN SUCCESS




SY Maint - continued

* Methods used to Read/Write records

* SetValue()

* Calls RetrieveCollinfo() to get column info from
the dictionary

* Override dictionary info with either:
EVN(“ OBJ'ColumnOverride”+ColumnName$)
EVN(“ OBJ'ClassOverride”+ClassName$)

e Calls Validate() which performs dictionary
validation and calls other validation routines

retVal = OBJ'Validate(col$,val$)
* Sets the value in the Ul if one exists
IF coUl { coUl'SetVar(col$,VIN(col$)) }



SY Maint - continued

* Methods used to Read/Write
records

* Validate()
* Performs any validation group logic first
EVN(" OBJ'ValidateGroup"+GrpNames$+"()")
* Dictionary validation is performed next
_OBJ'ValidateRule(val$,colDesc$,colTypes,...)
* Column Specific Validation
EVN(" OBJ'Validate"+Column$+"("+Val$+")")
* Class Validation

EVN(" OBJ‘ClassValidate"+Class$+"("+Val$
+II)II)



SY Maint - continued

* Referential Integrity

* OBJ'PostWriteRec()
* Called from SY_Maint'Write()
e After a successful write
* Used for updating additional information

* OBJ'PostDeleteRec()
* Called from SY_Maint’'Delete()
* After a successful delete

e Useful for cleaning up or updating additial
information




e Implemented Business Object

2007

* Inherits SY_Maint
* Add Implementation properties
* cMainTable$ / clsSysDB

* Add Implementation Methods
e SetChildColl()
* ValidateXxxxxx(val$)

* OQverride base class to achieve
desired functionality

* Link In any Service and Validation
Classes

PROVIDEX

PARTNERS
IN SUCCESS



Implemented Business Object

* Common Implementation Examples

* SetDefaults() - For default values need to be set
programmatically when creating a new record
* Example: SO_Invoice_bus Implements SetDefaults()
to set BatchNo$, InvoiceDate$, InvoiceType$, etc.
* Write() & Delete()- For updating additional tables
when writing or deleting a record
* Example: AR _Customer_bus updates IT _Customer
and various other tables depending on setup options
* ConfirmDelete() - For checking restrictions when
deleting a record

* Example: AR Customer _bus will not allow Customers
with Open Invoices, CRM Prospect Customers, Etc, to
be deleted




*NOMADS

* ProvideX-provided class
* NOMADS functionality encapsulated

* Logic previously found in NOMADS now
available as methods in the application
class
* PROCESS()

* PreLoad()
* PostLoad()




SY CommonUl

* Methods common to all Ul objects
* Inherits *NOMADS

* Inherited by SY MaintUI

* Used in place of SY MaintUl if added
functionality not needed

 Utilities, Launcher, Reporting

* Includes basic Ul Methods
* AppendTitleBar()
* NomadsProcess()
* ParseTagField()
* SetControlState()




SY MaintUl

* Provides consistent Ul interface for
maintaining data

* Inherits SY CommonUl, SY_OpenObject

* Include properties for Ul
* coBusiness, cSecurityAccess, clnitMain

* Includes Methods to connect Ul to
Business Object
* |InitBusinessObject()
* Invoked from ON_CREATE of Implementation Ul

* Instantiates Business Object and sets Ul handle
* Localizes (STATIC) the main table IOLIST




SY MaintUl

* Connecting Ul to Business Object

* GetBusinessObject()

* Returns BUSOBJ= tag of the current or specific
control

* BindVariables()

* Processes BIND= tag of each control
* Invokes ExplodelOL()

* ExplodelOL()
* Called from KeyChange(), Browse() & BT _Cancel()
* Read data from Record$ to IOL$
* EVN(“ _OBJ'KeyChangeAdditional()"”)
* Implement to override KeyChange() logic
* EVN(“_OBJ'PostReadRec()”)




SY MaintUl

* Connecting Ul to Business Object
* KeyChange()

* Invoke this method from Change method of
key column(s) of Implementation Ul

* Sets the key of the business object

* Standard Ul Methods

* OnExit()
* Method invoked when Dialog panels are
closed
* Invokes ConfirmWrite() if cSkipDialog is not
set

* Invokes BT Cancel()
* Clears the business object




SY MaintUl - continued

e Standard Ul Methods

* PostLoad()

* This method is invoked for Dialog panels

* Invokes SetFormDisplay() to hide/show
controls based on security

* Invokes BindVariables(clnitMain)

* Invokes AppendTitleBar() to modify the
Caption to include company and date

* Calls KeyChange if a key is passed on the
Process argument list

* KeyChange(ARG 1%)
* OBJ'SetInitialRecord(atom)




SY MaintUl - continued

e Standard Button Methods

* BT Accept()
* Calls the Write() method for the main business
object and any other business object in collection
* Calls BT Cancel after the write is finished

* BT Delete()
* Calls ConfirmDelete()
* Calls the Delete() method for the business object
* Calls BT Cancel after the delete is finished

* BT Cancel()
* Calls the Clear() method for the business object
* Calls SetFormState()
* Calls SetFocusFirstID()




SY MaintUl - continued

* More Standard Ul Methods

* ConfirmDelete()

* Calls ConfirmDelete() from the Business
Object

* |If record “can not” be deleted - Display
message as to why not

* If record “can” be deleted - Display confirm
delete message




SY MaintUl - continued

1 DefauItChange()

* Invoked by NOMADS if no specific change logic exists

* (Calls SetValue() for the column that matches the control
name

* Fire any dictionary and business validation logic
* If SetValue returns retSUCCESS
* No further action, DefaultChange returns
* NOMADS sets focus to next control
* If SetValue fails - retFAILURE
* Display LastErrorMsg$ from business object
* Restore the previous value of the control
* Return focus to the same control
* If SetValue returns retWARNING
* Display message only
* Remaining process is same as retSUCCESS

Hint: If you need additional change logic, you can still call
DefaultChange() from your Change method




DIREXIONS

2007

PROVIDEX

PARTNERS

IN SUCCESS

Implemented Ul Object

Inherits SY MaintUI
Add your Implementation properties
* clnitpXxxxx - BindVariable flags

Set Screen properties in ON_CREATE
* SCREEN_LIB$ = “XX_ Xxxxxxx.M4L"
 SCREEN ID$ = "dMain“

Call InitBusinessObject in
ON CREATE

Add your Button Methods

* Methods named same as Button control
* Ex: BT Accept(), BT _Cancel(), BT Delete()



Implemented Ul Object

* Add Event Handling methods

* OnFocusXxxxxx()

* Save off values of other, affected controls

* Example: SO_CommonEntry UlI’'OnFocusUnitPrice() saves off
Extension amount in case the unit price entered fails
validation

* ChangeXxxxxxx()
* Implement control specific change logic when:
* A Control is not part of the IOLIST

* When more than Default Change logic is
required
* Key Columns where KeyChange() must be called

* When possible, call DefaultChange() vs. coding
default change logic yourself
* Example: SO_CommonEntry Ul'ChangeDepositAmt



Implemented Ul Object

* Inherit Ul Validation Logic

* For all classes used on the Form
ClassValidate

ClassFormatter

ClassOnFocus

ClassChange

* LIKE all relevant Ul VAL classes

* Keeps consistency between various
control elements




Implemented Ul Object

* Panel and Dialog methods

* PreLoad(), PreLoadXxxxxxx()

* Called prior to loading the Form or Panel
XXXXXXX

* PostLoad(), PostLoadXxxxxxx()

* Called after Form or Panel Xxxxxxx is loaded
but before first control gaining focus

* OnExit(), OnExitXxxxxxx()

e Called when Form or Panel Xxxxxxx is closed




Implemented Ul Object

* Other common Ul methods

* PostReadRec()

* Implement to execute logic processed when
the Business Object’s EditState changes

* KeyChange()
* Browse()
* BT Cancel()

* Used to set the screen state based on the
EditState of the business object and other
options



Questions?




DIREXIONS _
End of Presentation

THANK YOU!

PROVIDEX

PARTNERS
IN SUCCESS




	Base Classes 101
	Slide 2
	Presentation Overview
	Core Concepts and Terms
	Base System Classes
	SY_Session
	SY_Security
	Slide 8
	SY_UI
	SY_File
	SY_Constant
	SY_OpenObject
	Class Hierarchy
	Hierarchal View of Base Classes
	Building Classes
	Base Application Classes
	SY_Common
	SY_Service
	SY_Maint
	SY_Maint – continued
	Slide 21
	Slide 22
	Implemented Business Object
	Slide 24
	*NOMADS
	SY_CommonUI
	SY_MaintUI
	Slide 28
	Slide 29
	SY_MaintUI - continued
	Slide 31
	Slide 32
	Slide 33
	Implemented UI Object
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Questions?
	THANK YOU!

